College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter 6 - Matrices and Determinants - Exercise Set 6.1 - Page 599: 23

Answer

Solution set: $\{(3,-1,-1)\}$

Work Step by Step

Begin with the system's augmented matrix. $\left[\begin{array}{lllll} 1 & 3 & 0 & | & 0\\ 2 & 1 & 1 & | & 1\\ 3 & -1 & -1 & | & 11 \end{array}\right]$ Use matrix row operations to get ls down the main diagonal from upper left to lower right, and Os below the $1\mathrm{s}$ (row-echelon form). $\left[\begin{array}{lllll} 1 & 3 & 0 & | & 0\\ 2 & 1 & 1 & | & 1\\ 3 & -1 & -1 & | & 11 \end{array}\right]\left\{\begin{array}{l} .\\ -2R1+R2\rightarrow R2\\ -3R1+R3\rightarrow R3 \end{array}\right.$ $\left[\begin{array}{lllll} 1 & 3 & 0 & | & 0\\ 0 & -2 & 1 & | & 1\\ 0 & -10 & -1 & | & 11 \end{array}\right]\left\{\begin{array}{l} .\\ \times(-\frac{1}{2})\\ -5R2+R3\rightarrow R3 \end{array}\right.$ $\left[\begin{array}{lllll} 1 & 3 & 0 & | & 0\\ 0 & 1 & -1/2 & | & -1/2\\ 0 & 0 & -6 & | & 6 \end{array}\right]\left\{\begin{array}{l} .\\ .\\ \Rightarrow-6z=6 \end{array}\right.$ $z=-1$ Back substitute $z=-1$ into row 2, $y-\displaystyle \frac{1}{2}(-1)=-\frac{1}{2}$ $y=-\displaystyle \frac{1}{2}-\frac{1}{2}=-1$ Back substitute into equation 1: $x+3(-1)=0$ $x=3$ Solution set: $\{(3,-1,-1)\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.