Answer
See an explanation
Work Step by Step
$f(x)=1+\frac{1}{x},$ $g(x)=\frac{1}{x}$
a.$(f+g)(x)=\frac{x+1}{x}+\frac{1}{x}=\frac{x+2}{x}$
for all ${x|x \in \mathbb{R}} \ne 0$
b.$(f-g)(x)=\frac{x+1}{x}-\frac{1}{x}=\frac{x}{x}=1$
for all ${x|x \in \mathbb{R}} \ne 0$
c. $(f \times g)(x)=\frac{x+1}{x}\times \frac{1}{x}=\frac{x+1}{x^2}$
for all ${x|x \in \mathbb{R}} \ne 0$
d. $(f/g)(x)=\frac{\frac{x+1}{x}}{\frac{1}{x}}=x+1$
for all ${x|x \in \mathbb{R}} \ne 0$
e. $(f+g)(3)=\frac{5}{3}$
f. $(f-g)(4)=1$
g. $(f\times g)(2)=\frac{3}{4}$
h. $(f/g)(1)=2$