Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 10 - Review Exercises - Page 763: 111

Answer

$16$

Work Step by Step

The general form of a matrix of order $ 3 \times 3$ is: $\begin{bmatrix} a & b & c \\ d & e & f \\ g & h& i \end{bmatrix}=a(ei-fh) -b(di-fg)+c(dh-eg)$ Use the formula for the area of a triangle with the determinant. $D=det \begin{bmatrix} a & x & 1 \\ b & y & 1 \\ c & z & 1 \end{bmatrix} $ $Area=|\dfrac{1}{2} D|$ Now, $D=det \begin{bmatrix} 5 & 8& 1 \\ 5 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} =-32$ So, $Area=|\dfrac{1}{2} (-32)|=|-16|=16$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.