#### Answer

$\dfrac{\dfrac{25}{x+5}+5}{\dfrac{3}{x+5}-5}=-\dfrac{5(x+10)}{5x+22}$

#### Work Step by Step

$\dfrac{\dfrac{25}{x+5}+5}{\dfrac{3}{x+5}-5}$
Evaluate the sum indicated in the numerator and the substraction indicated in the denominator:
$\dfrac{\dfrac{25}{x+5}+5}{\dfrac{3}{x+5}-5}=\dfrac{\dfrac{25+5(x+5)}{x+5}}{\dfrac{3-5(x+5)}{x+5}}=\dfrac{\dfrac{25+5x+25}{x+5}}{\dfrac{3-5x-25}{x+5}}=...$
$...=\dfrac{\dfrac{5x+50}{x+5}}{\dfrac{-5x-22}{x+5}}=...$
Evaluate the division:
$...=\dfrac{5x+50}{x+5}\div\dfrac{-5x-22}{x+5}=\dfrac{(5x+50)(x+5)}{(x+5)(-5x-22)}=...$
Take out common factor $5$ from the first parentheses in the numerator and simplify if possible:
$...=\dfrac{5(x+10)(x+5)}{(x+5)(-5x-22)}=\dfrac{5(x+10)}{-5x-22}=-\dfrac{5(x+10)}{5x+22}$