#### Answer

$\dfrac{x^{2}-25}{x^{2}-3x-10}\cdot\dfrac{x+2}{x}=\dfrac{x+5}{x}$

#### Work Step by Step

$\dfrac{x^{2}-25}{x^{2}-3x-10}\cdot\dfrac{x+2}{x}$
Factor the numerator and the denominator of the first fraction:
$\dfrac{x^{2}-25}{x^{2}-3x-10}\cdot\dfrac{x+2}{x}=\dfrac{(x-5)(x+5)}{(x+2)(x-5)}\cdot\dfrac{x+2}{x}=...$
Multiply both rational expressions and simplify by removing repeated factors in the numerator and the denominator:
$...=\dfrac{(x-5)(x+5)(x+2)}{x(x+2)(x-5)}=\dfrac{x+5}{x}$