Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 13 - Review - Page 962: 36

Answer

$(2, -\sqrt 8)$, $(2,\sqrt 8)$

Work Step by Step

$4x-y^2=0$ $2x^2+y^2=16$ $4x-y^2=0$ $4x-y^2+y^2=0+y^2$ $4x=y^2$ $2x^2+y^2=16$ $2x^2+4x=16$ $2x^2+4x-16=16-16$ $2x^2+4x-16=0$ $a=2$, $b=4$, $c=-16$ $x=(−b±\sqrt {b^2−4ac})/2a$ $x=(−4±\sqrt {4^2−4*2*-16})/2*2$ $x=(-4±\sqrt {16+128})/4$ $x=(-4±\sqrt {144})/4$ $x=(-4±12)/4$ $x=(-4+12)/4$ $x=8/4$ $x=2$ $x=(-4-12)/4$ $x=-16/4$ $x=-4$ $x=-4$ $4x-y^2=0$ $4*-4-y^2=0$ $-16-y^2=0$ $-16-y^2+y^2=0+y^2$ $-16=y^2$ Since we are working on the real numbers, we cannot have the square root of a negative number. Thus, $x \ne -4$. $x=2$ $4x-y^2=0$ $4*2-y^2=0$ $8-y^2=0$ $8-y^2+y^2=0+y^2$ $8=y^2$ $\sqrt 8 =\sqrt {y^2}$ $±\sqrt 8 =y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.