Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 13 - Review - Page 962: 33

Answer

When $\Rightarrow$ $x=4 , y=4$ or $x=1 , y=-2$

Work Step by Step

Given: $y=2x-4$ $y^{2}=4x$ Substituting value of $y=2x-4$ in $y^{2}=4x$, we get: $(2x-4)^{2}=4x$ Expanding, $4x^{2}-16x+16=4x$ $\Rightarrow$ $4x^{2}-20x+16=0$ $\Rightarrow$ $x^{2}-5x+4=0$ (Taking 4 common from both sides) $\Rightarrow$ $x^{2}-4x-x+4=0$ ....... (because $-5x=-4x-x)$ $\Rightarrow$ $x(x-4)-1(x-4)=0$ $\Rightarrow$ $(x-4)(x-1)=0$ $\Rightarrow$ $x=4$ or $x=1$ Thus, $y=2x-4$ When $x=4$ $\Rightarrow$ $y=8-4$ When $x=1$ $\Rightarrow$ $y=2-4$ $\Rightarrow$ $x=4 , y=4$ or $x=1 , y=-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.