Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 7 - Exponential and Logarithmic Functions - Chapter Review - Page 490: 67

Answer

$x=\dfrac{e^2\sqrt{2e}}{4}\approx 4.3072$

Work Step by Step

\begin{align*} \ln{x^2}+\ln{2^3}&=5 &\text{Power Property of Logarithms}\\\\ \ln{x^2}+\ln8&=5 &\text{Write the equation in exponential form.}\\\\ \ln{(x^2\cdot8)}&=5 &\text{Product Property of Logarithms}\\\\ \ln{(8x^2)}&=5 &\text{Product Property of Logarithms}\\\\ e^5&=8x^2&\text{Write the equation in exponential form.}\\\\ \frac{e^5}{8}&=\frac{8x^2}{8}&\text{Divide 8 to both sides.}\\\\ \frac{e^5}{8}&=x^2\\\\ \pm\sqrt{\frac{e^5}{8}}&=\sqrt{x^2} &\text{Take the square root of both sides.}\\\\ \pm\sqrt{\frac{e^5}{8}\cdot \frac{2}{2}}&=x &\text{Simplify.}\\\\ \pm\sqrt{\frac{2e^5}{16}}&=x \\\\ \pm\frac{e^2}{4}\sqrt{2e}&=x \\\\ x&=\pm \frac{e^2\sqrt{2e}}{4}\\\\ x&\approx \pm 4.3072 &\text{Evaluate using a calculator.} \end{align*} Note that in $\ln{x}$, $x$ has to be greater than $0$. This means that in the given equation, $x\approx -4.3072$ is an extraneous solution. Check: \begin{align*} 2\ln{\left(\frac{e^2\sqrt{2e}}{4}\right)}+3\ln{\left(\frac{e^2\sqrt{2e}}{4}\right)}&\stackrel{?}=5\\\\ 5&=5 \end{align*} Thus, the solution is $x=\dfrac{e^2\sqrt{2e}}{4}\approx 4.3072$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.