Algebra 2 Common Core

Published by Prentice Hall
ISBN 10: 0133186024
ISBN 13: 978-0-13318-602-4

Chapter 6 - Radical Functions and Rational Exponents - 6-3 Binomial Radical Expressions - Practice and Problem-Solving Exercises - Page 379: 43

Answer

$-2\sqrt[3]{2}$

Work Step by Step

Factor each radicand so that one factor of the factors is a perfect cube: $3\sqrt[3]{8\cdot2}-4\sqrt[3]{27\cdot2}+\sqrt[3]{64\cdot2}$ Recall the property (pg. 367): $\sqrt[n]{a}\cdot\sqrt[n]{b}=\sqrt[n]{ab}$ (if $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are real numbers) Applying this property, we get: $3\sqrt[3]{8\cdot2}-4\sqrt[3]{27\cdot2}+\sqrt[3]{64\cdot2}$ $=3\sqrt[3]{8}\cdot\sqrt[3]{2}-4\sqrt[3]{27}\cdot \sqrt[3]{2}+\sqrt[3]{64}\cdot\sqrt[3]{2}$ Recall that $2^3=8$, $3^3=27$, and $4^3=64$. Thus, the expression above simplifies to: $=3\cdot2\sqrt[3]{2}-4\cdot3\sqrt[3]{2}+4\cdot\sqrt[3]{2}$ $=6\sqrt[3]{2}-12\sqrt[3]{2}+4*\sqrt[3]{2}$ $=(6-12+4)\sqrt[3]{2}$ $=-2\sqrt[3]{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.