Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 7 - Exponents and Exponential Functions - Mid-Chapter Quiz - Page 439: 4



Work Step by Step

We rewrite the given expression as a division problem: $mn^{-4}\div p^0q^{-2}$ The zero as an exponent rule states that for every nonzero number $a$, $a^0=1$. Since $p^0=1$, and anything multiplied by $1$ is itself, we can ignore the $p^0$ term: $mn^{-4}\div q^{-2}$ The negative exponent rule states that for every nonzero number $a$ and integer $n$, $a^{-n}=\frac{1}{a^n}$. We use this rule to rewrite the expression: $\frac{m}{n^4}\div\frac{1}{q^2}$ To divide fractions, we multiply by the reciprocal: $\frac{m}{n^4}\times\frac{q^2}{1}$ To multiply the fractions, we multiply the numerators and the denominators: $\frac{mq^2}{n^4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.