Answer
$t=0.549(\frac{v_f}{g})$
Work Step by Step
$\frac{dv}{dt}=a=(\frac{g}{v_f^2})(v_f^2-v^2)$
$\int_0^v\frac{dv}{v_f^2-v^2}=\frac{g}{v_f^2}\int_0^t dt$
$\frac{1}{2v_f}\ln(\frac{v_f+v}{v_f-v})|^v_0=\frac{g}{v_f^2}t$
$t=\frac{v_f}{2g}\ln(\frac{v_f+v}{v_f-v})$
$t=\frac{v_f}{2g}\ln(\frac{v_f+v_f/2}{v_f-v_f/2})$
$t=0.549(\frac{v_f}{g})$