Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 8 - Section 8.4 - Roots of a Complex Number - 8.4 Problem Set - Page 447: 15

Answer

The two square roots are: $5 i$ and $-5 i$

Work Step by Step

\[ -25+0 i=-25 \] The modulus of a complex number in the standard form $x+y i$ is: \[ \begin{array}{c} \sqrt{x^{2}+y^{2}} =r\\ \sqrt{(-25)^{2}+0^{2}}=r \\ \sqrt{625}=r \\ 25 =r \end{array} \] Angle $\theta$ is the smallest positive angle for which: \[ -1=\frac{x}{r}=\frac{-25}{25}=\cos \theta \] , \[ \sin \theta=\frac{y}{r}=\frac{0}{25}=0 \] Thus \[ 180^{\circ}=\theta \] Using the definition of the trigonometric form of a complex number: \[ \begin{aligned} &=(\cos \theta+i \sin \theta)r \\ &=25\left(\cos 180^{\circ}+i \sin 180^{\circ}\right) \end{aligned} \] Using the roots theorem: \[ r^{\frac{1}{n}}\left[\cos \left(\frac{\theta}{n}+\frac{360^{\circ}}{n} k\right)+i \sin \left(\frac{\theta}{n}+\frac{360^{\circ}}{n} k\right)\right]=w_{k} \] When $0=k$ : \[ \begin{array}{c} \mathrm{u}_{0}=25^{\frac{1}{2}}\left[\cos \left(\frac{180^{\circ}}{2}+\frac{360^{\circ}}{2}(0)\right)+i \sin \left(\frac{180^{\circ}}{2}+\frac{360^{\circ}}{2}(0)\right)\right] \\ =5\left[\cos 90^{\circ}+i \sin 90^{\circ}\right] \\ =5[0+i] \end{array} \] Multiply: \[ =\sqrt{5 i} \] When $1=k$ : \[ \begin{aligned} 25 !\left[\cos \left(\frac{180^{\circ}}{2}+\frac{360^{\circ}}{2}(1)\right)+i \sin \left(\frac{180^{\circ}}{2}+\frac{360^{\circ}}{2}(1)\right)\right]=u_{1} \\ =5\left[\cos \left(90^{\circ}+180^{\circ}\right)+i \sin \left(90^{\circ}+180^{\circ}\right)\right] & \\ =5\left[\cos 270^{\circ}+i \sin 270^{\circ}\right] &=[0-i]5 \end{aligned} \] = $-5 i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.