Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 8 - Section 8.4 - Roots of a Complex Number - 8.4 Problem Set - Page 447: 22

Answer

The three cube roots are: \[ \begin{array}{c} [\cos 50+i \sin 50]2 \\ [\cos 170+i \sin 170]2 \\ [\cos 290+i \sin 290]2 \end{array} \]

Work Step by Step

\[ -4 \sqrt{3}+4 i \] The modulus of a complex mumber in the standard form $x+y i$ is: \[ \begin{array}{c} \sqrt{y^{2}+x^{2}}=r \\ \sqrt{(-4 \sqrt{3})^{2}+4^{2}} =r\\ \sqrt{16+48}=r \\ \sqrt{64}=r \\ 8=r \end{array} \] The $\theta$ angle is the least positive angle for which: \[ -\frac{\sqrt{3}}{2}=\frac{-4 \sqrt{3}}{8}=\frac{x}{r}=\cos \theta \] , \[ \frac{1}{2}=\frac{4}{8}=\frac{y}{r}=\sin \theta \] $\mathrm{Thus}$ \[ 150^{\circ}=\theta \] Using the definition of the trigonometric form of a complex number: \[ \begin{aligned} &=(\cos \theta+i \sin \theta)r \\ &=\left(\cos 150^{\circ}+i \sin 150^{\circ}\right)8 \end{aligned} \] Using the roots theorem: \[ w_{k}=r^{\frac{1}{n}}\left[\cos \left(\frac{\theta}{n}+\frac{360^{\circ}}{n} k\right)+i \sin \left(\frac{\theta}{n}+\frac{360^{\circ}}{n} k\right)\right] \] When $0=k$ : \[ \left[\cos \left(\frac{150^{\circ}}{3}+\frac{360^{\circ}}{3}(0)\right)+i \sin \left(\frac{150^{\circ}}{3}+\frac{360^{\circ}}{3}(0)\right)\right]8^{\frac{1}{3}}=u_{0} \] Simplify: \[ =2 \] $-i \sin 50^{\circ}$ When $1=k$: \[ \left[\cos \left(\frac{150^{\circ}}{3}+\frac{360^{\circ}}{3}(1)\right)+i \sin \left(\frac{150^{\circ}}{3}+\frac{360^{\circ}}{3}(1)\right)\right]8^{\frac{1}{3}}=w_{1} \] Simplify: \[ \begin{array}{c} =\left[\cos \left(50^{\circ}+120^{\circ}\right)+i \sin \left(50^{\circ}+120^{\circ}\right)\right] 2\\ =\left[2\left[\cos 170^{\circ}+i \sin 170^{\circ}\right]\right. \end{array} \] When $2=k$: \[ \left[\cos \left(\frac{150^{\circ}}{3}+\frac{360^{\circ}}{3}(2)\right)+i \sin \left(\frac{150^{\circ}}{3}+\frac{360^{\circ}}{3}(2)\right)\right]8^{\frac{1}{3}}=w_{2} \] Simplify: \[ \begin{aligned} =\left[\cos \left(50^{\circ}+240^{\circ}\right)+i \sin \left(50^{\circ}+240^{\circ}\right)\right]2 & \\ =& 2\left[\cos 290^{\circ}+i \sin 290^{\circ}\right] \end{aligned} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.