Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 8 - Section 8.4 - Roots of a Complex Number - 8.4 Problem Set - Page 447: 12

Answer

$Two\,\,square\,\,roots\,\,of\,\,-2 + 2 \sqrt{3} i$ $\sqrt[2]{-2 + 2 \sqrt{3} i}=1+\sqrt{3}i \\ \sqrt[2]{-2 + 2 \sqrt{3} i}=-1-\sqrt{3}i\\ $

Work Step by Step

$to\,\,find\,\,nth\,root\,of\,a\,complex\,number\,z=r(cos\theta+isin\theta) :\\ \sqrt[n]{r}\left(\cos\left(\frac{\theta+2\pi k}{n}\right)+i\sin\left(\frac{\theta+2\pi k}{n}\right)\right)\\ k=0,1,2,.......,n-1 \\so\,\, -2 + 2 \sqrt{3} i=4 \cos{\left (\frac{2\pi}{3} \right )} + 4 i \sin{\left (\frac{2\pi}{3} \right )}\\ r=4\,\,,\theta= \frac{2\pi}{3}\,\,,n=2 \\ for\,k=0\\ \sqrt[2]{4}\left(\cos\left(\frac{\left(\frac{2\pi}{3}\right)+2\pi \cdot 0}{2}\right)+i\sin\left(\frac{\left(\frac{2\pi}{3}\right)+2\pi \cdot 0}{2}\right)\right)\\=2\left(\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right)=1+\sqrt{3}i \\ for\,k=1\\ \sqrt[2]{4}\left(\cos\left(\frac{\left(\frac{2\pi}{3}\right)+2\pi \cdot 1}{2}\right)+i\sin\left(\frac{\left(\frac{2\pi}{3}\right)+2\pi \cdot 1}{2}\right)\right)\\=2\left(\cos\left(\frac{4 \pi}{3}\right)+i\sin\left(\frac{4 \pi}{3}\right)\right)=-1- \sqrt{3}i \\ so\,\,\\ \sqrt[2]{-2 + 2 \sqrt{3} i}=1+\sqrt{3}i \\ \sqrt[2]{-2 + 2 \sqrt{3} i}=-1-\sqrt{3}i\\ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.