Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 8 - Section 8.4 - Roots of a Complex Number - 8.4 Problem Set - Page 447: 11

Answer

$two\,\,square\,\,root\,\,of\,\,2 + 2 \sqrt{3} i$ $\sqrt[2]{2 + 2 \sqrt{3} i}=\sqrt{3}+i \\ \sqrt[2]{2 + 2 \sqrt{3} i}=-\sqrt{3}-i $

Work Step by Step

$to\,\,find\,\,nth\,root\,of\,a\,complex\,number\,z=r(cos\theta+isin\theta) :\\ \sqrt[n]{r}\left(\cos\left(\frac{\theta+2\pi k}{n}\right)+i\sin\left(\frac{\theta+2\pi k}{n}\right)\right)\\ 2 + 2 \sqrt{3} i=4 \cos{\left (\frac{\pi}{3} \right )} + 4 i \sin{\left (\frac{\pi}{3} \right )}\\ r=4\,\,,\theta= \frac{\pi}{3}\,\,,n=2 \\ for\,k=0\\ \sqrt[2]{4}\left(\cos\left(\frac{\left(\frac{\pi}{3}\right)+2\pi \cdot 0}{2}\right)+i\sin\left(\frac{\left(\frac{\pi}{3}\right)+2\pi \cdot 0}{2}\right)\right)\\=2\left(\cos\left(\frac{\pi}{6}\right)+i\sin\left(\frac{\pi}{6}\right)\right)=\sqrt{3} + i \\ for\,k=1\\ \sqrt[2]{4}\left(\cos\left(\frac{\left(\frac{\pi}{3}\right)+2\pi \cdot 1}{2}\right)+i\sin\left(\frac{\left(\frac{\pi}{3}\right)+2\pi \cdot 1}{2}\right)\right)\\=2\left(\cos\left(\frac{7 \pi}{6}\right)+i\sin\left(\frac{7 \pi}{6}\right)\right)=- \sqrt{3} - i \\ $ $so\,\,\\ \sqrt[2]{2 + 2 \sqrt{3} i}=\sqrt{3}+i \\ \sqrt[2]{2 + 2 \sqrt{3} i}=-\sqrt{3}-i $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.