Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 65

Answer

$$S = \frac {24 \pi} 5( {949} \sqrt {26} + 1 )$$

Work Step by Step

1. Write the formula for the area of the surface obtained by rotating a curve about the $y$-axis. $$S = \int_{\alpha}^{\beta} 2\pi x \sqrt {(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Calculate: $\frac{dx}{dt}$ and $\frac{dy}{dt}$: $\frac{dx}{dt} = \frac{d(3t^2)}{dt} = 6t$ $\frac{dy}{dt} = \frac{d(2t^3)}{dt} = 6t^2 $ 3. Substitute the given values into the formula: $S = \int_{0}^{5} 2\pi (3t^2) \sqrt {(6t)^2 + (6t^2)^2} \space dt$ $S = \int_{0}^{5} 2\pi (3t^2) \sqrt {36t^2 + 36t^4} \space dt$ $S = \int_{0}^{5} 2\pi (3t^2) \sqrt {36t^2( 1 + t^2)} \space dt$ $S = \int_{0}^{5} 2\pi (18t^3) \sqrt { 1 + t^2} \space dt$ $S = 18 \pi \int_{0}^{5} (2t)(t^2) \sqrt { 1 + t^2} \space dt$ ** u = $t^2 + 1 \longrightarrow \frac{du}{dt} = 2t$ ** $t^2 = u -1$ ** $u_1 = 0^2 + 1 = 1$ ** $u_2 = 5^2 + 1 = 26$ $S = 18 \pi \int_{1}^{26} (\frac{du}{dt})(u - 1) \sqrt { u} \space dt$ $S = 18 \pi \int_{1}^{26} (u\sqrt u - \sqrt u) \space du$ $S = 18 \pi \int_{1}^{26} (u^{3/2} - u^{1/2}) \space du$ $S = 18 \pi [\frac 2 5 u^{5/2} - \frac 2 3 u^{3/2}]_1^{26}$ $S = 18 \pi [\frac 2 5 (26)^{5/2} - \frac 2 3 (26)^{3/2}] - 18 \pi [[\frac 2 5 (1)^{5/2} - \frac 2 3 (1)^{3/2}]]$ $S = 18 \pi [\frac {3796} {15} \sqrt {26}] - 18 \pi [\frac {-4} {15} ] $ $S = \frac {63328 \pi} {15} \sqrt {26} + \frac {72 \pi} {15} $ $S = 72( \frac {949 \pi} {15} \sqrt {26} + \frac {\pi} {15}) $ $S = \frac {24 \pi} 5( {949} \sqrt {26} + 1) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.