Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 43

Answer

$$L = \frac 1 2 ({\sqrt 2} + \ln ({\sqrt 2 + 1})) $$

Work Step by Step

1. Write the formula for the length "$L$"of a curve: $$L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ $\frac{dx}{dt} = \frac{d(tsin(t))}{dt} = sin(t) + tcos(t)$ $\frac{dy}{dt} = \frac{d(tcos(t))}{dt} = cos(t) - tsin(t)$ 3. Substitute the values into the definite integral: $L = \int_{\alpha}^{\beta} \sqrt{(sin(t) + tcos(t))^2 + (cos(t) - tsin(t))^2} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(sin^2(t) +2tsin(t)cos(t) + t^2cos^2(t)) + (cos^2(t) -2tsin(t)cos(t) + t^2sin^2(t))} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{1 + t^2} \space dt$ Since $t$ goes from 0 to 1: $L = \int_{0}^{1} \sqrt{1 + t^2} \space dt$ $L = (\frac 1 2 t \sqrt {1 + t^2} + \frac 1 2\ln ({\sqrt {1 + t^2} + t}))]^1_0$ $L = (\frac 1 2 (1) \sqrt {1 + 1^2} + \frac 1 2\ln ({\sqrt {1 + 1^2} + 1})) - (\frac 1 2 (0) \sqrt {1 + 0^2} + \frac 1 2\ln ({\sqrt {1 + 0^2} + 0}))$ $L = \frac {\sqrt 2} 2 + \frac 1 2 \ln ({\sqrt 2 + 1}) + \ln (1)$ $L = \frac {\sqrt 2} 2 + \frac 1 2 \ln ({\sqrt 2 + 1}) $ $L = \frac 1 2 ({\sqrt 2} + \ln ({\sqrt 2 + 1})) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.