Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 44

Answer

$$L = 12$$

Work Step by Step

1. Write the formula for the length "$L$"of a curve: $$L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ $\frac{dx}{dt} = \frac{d(3cos(t) - cos(3t))}{dt} = -3sin(t) + 3sin(3t)$ $\frac{dy}{dt} = \frac{d(3sin(t) - sin(3t))}{dt} = 3cos(t) -3cos(3t)$ 3. Substitute the values into the definite integral: $L = \int_{0}^{\pi} \sqrt{(-3sin(t) + 3sin(3t))^2 + (3cos(t) - 3cos(3t))^2} \space dt$ $L = \int_{0}^{\pi} \sqrt{(9sin^2(t) - 18sin(t)sin(3t) + 9sin^2(3t)) + (9cos^2(t) - 18cos(t)cos(3t) + 9cos^2(3t))} \space dt$ $L = \int_{0}^{\pi} \sqrt{(9(sin^2(t) + cos^2(t)) - 18(sin(t)sin(3t) + cos(t)cos(3t)) + 9(cos^2(3t) + sin^2(3t)))} \space dt$ $L = \int_{0}^{\pi} \sqrt{(9(sin^2(t) + cos^2(t)) - 18(sin(t)sin(3t) + cos(t)cos(3t)) + 9(cos^2(3t) + sin^2(3t)))} \space dt$ $L = \int_{0}^{\pi} \sqrt{(9 - 18(cos(3t - t)) + 9)} \space dt$ $L = \int_{0}^{\pi} \sqrt{(18 - 18(cos(2t)) )} \space dt$ $L = \int_{0}^{\pi} \sqrt{18(1 - (cos(2t)) )} \space dt$ ** Notice: $cos(2t) = 1 - 2sin^2(t)$ $L = \int_{0}^{\pi} \sqrt{18(1 - (1 - 2sin^2(t)) )} \space dt$ $L = \int_{0}^{\pi} \sqrt{36 sin^2(t)} \space dt$ $L = \int_{0}^{\pi} 6 sin(t) \space dt$ $L = 6(-cos(t))]^{\pi}_0$ $L = -6cos(\pi) - (-6cos(0))$ $L = -6(-1) + 6(1)$ $L = 12$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.