Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 37

Answer

$L = \int_0^2 \sqrt{2 + 2e^{-2t} } \space dt \approx 3.1416$

Work Step by Step

1. Write the formula for the length "$L$"of a curve: $$L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ $\frac{dx}{dt} = \frac{d(t + e^{-t})}{dt} = 1 - e^{-t}$ $\frac{dy}{dt} = \frac{d(t - e^{-t})}{dt} = 1 + e^{-t}$ 3. Substitute the values into the definite integral: $L = \int_{\alpha}^{\beta} \sqrt{(1 - e^{-t})^2 + (1 + e^{-t})^2} \space dt$ - Since $t$ goes from 0 to 2: $L = \int_0^2 \sqrt{(1 - e^{-t})^2 + (1 + e^{-t})^2} \space dt$ $L = \int_0^2 \sqrt{(1 -2e^{-t} + e^{-2t}) + (1 +2e^{-t} + e^{-2t})} \space dt$ $L = \int_0^2 \sqrt{(1 -2e^{-t} + e^{-2t}) + (1 +2e^{-t} + e^{-2t})} \space dt$ $L = \int_0^2 \sqrt{2 + 2e^{-2t} } \space dt$ 4. Write this integral on your calculator, and get the result. $L \approx 3.1416$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.