Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 677: 66

Answer

$$S = \pi(e^2 + 2e -6) $$

Work Step by Step

1. Write the formula for the area of the surface obtained by rotating a curve about the $x$-axis. $$S = \int_{\alpha}^{\beta} 2\pi y \sqrt {(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Calculate: $\frac{dx}{dt}$ and $\frac{dy}{dt}$: $\frac{dx}{dt} = \frac{d(e^t - t)}{dt} = e^t - 1$ $\frac{dy}{dt} = \frac{d(4e^{t/2})}{dt} = \frac 1 2(4)(e^{t/2}) = 2e^{t/2} $ 3. Substitute the given values into the formula: $S = \int_{0}^{1} 2\pi (e^t - t) \sqrt {(e^t - 1)^2 + (2e^{t/2})^2} \space dt$ $S = \int_{0}^{1} 2\pi (e^t - t) \sqrt {(e^{2t} -2e^t + 1) + (4e^{t})} \space dt$ $S = \int_{0}^{1} 2\pi (e^t - t) \sqrt {e^{2t} + 2e^t + 1} \space dt$ $S = \int_{0}^{1} 2\pi (e^t - t) \sqrt {(e^{t} + 1)}^2 \space dt$ $S = \int_{0}^{1} 2\pi (e^t - t) (e^{t} + 1)\space dt$ $S = \pi \int_{0}^{1} 2(e^{2t} + e^{t} -te^t - t)\space dt$ $S = \pi \int_{0}^{1} 2e^{2t} + 2e^{t} -2(te^t) - 2t\space dt$ $S = \pi[e^{2t} + 2e^t -2(t-1)^*e^t - t^2]_0^1$ $S = \pi[e^{2(1)} + 2e^1 -2(1-1)e^1 - (1)^2] - \pi[e^{2(0)} + 2e^0 -2(0-1)e^0 - (0)^2] $ $S = \pi(e^2 + 2e - 1 - (1 + 2 +2)) = \pi(e^2 + 2e -6) $ * Integral by parts: $$\int te^t \space dt$$ $u= t$ $\frac {du}{dt} = 1$ $\frac{dv}{dt} = e^t$ $v = e^t$ $$\int te^t \space dt = uv - \int v\frac{du}{dt} dt$$ $$\int te^t \space dt = te^t - \int e^t (1) = te^t - e^t = e^t(t-1)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.