Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 45

Answer

$$L = \sqrt {2} (e^{\pi} - 1)$$ ------

Work Step by Step

1. Write the formula for the length "$L$"of a curve: $$L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ $\frac{dx}{dt} = \frac{d(e^tcos(t))}{dt} = e^tcos(t) - e^tsin(t)$ $\frac{dy}{dt} = \frac{d(e^tsin(t))}{dt} = e^tsin(t) + e^tcos(t)$ 3. Substitute the values into the definite integral: $L = \int_{0}^{\pi} \sqrt{( e^tcos(t) - e^tsin(t))^2 + ( e^tsin(t) + e^tcos(t))^2} \space dt$ $L = \int_{0}^{\pi} \sqrt{( e^{2t}cos^2(t)- 2e^tcos(t)e^tsin(t) + e^{2t}sin^2(t)) + ( e^{2t}sin^2(t) + 2e^tsin(t)e^tcos(t) + e^{2t}cos^2(t))} \space dt$ $L = \int_{0}^{\pi} \sqrt{(2e^{2t}(cos^2(t) + sin^2(t)) )} \space dt$ $L = \int_{0}^{\pi} \sqrt{(2e^{2t} )} \space dt$ $L = \int_{0}^{\pi} \sqrt{2}(e^t) \space dt$ $L = \sqrt{2} \int_{0}^{\pi} (e^t) \space dt$ $L = \sqrt{2} [(e^t)]^{\pi}_0$ $L = \sqrt {2} (e^{\pi} - e^0)$ $L = \sqrt {2} (e^{\pi} - 1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.