Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 39

Answer

$$L = \int_0^{4\pi} \sqrt{(5 -4cos(t))} \space dt \approx 26.7298$$

Work Step by Step

1. Write the formula for the length "$L$"of a curve: $$L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ $\frac{dx}{dt} = \frac{d(t - 2sin(t))}{dt} = 1 - 2cos(t)$ $\frac{dy}{dt} = \frac{d(1 - 2cos(t))}{dt} = 0 - 2(-sin(t)) = 2sin(t)$ 3. Substitute the values into the definite integral: $L = \int_{\alpha}^{\beta} \sqrt{(1 - 2cos(t))^2 + (2sin(t))^2} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(1 -4cos(t) + 4cos^2(t)) + (4sin^2(t))} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(1 -4cos(t) + 4 (cos^2(t) + sin^2(t)))} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(1 -4cos(t) + 4)} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(5 -4cos(t))} \space dt$ - Since $t$ goes from 0 to 4$\pi$: $L = \int_0^{4\pi} \sqrt{(5 -4cos(t))} \space dt$ 4. Write this integral on your calculator (you can use online integral calculators), and get the result. $L \approx 26.7298$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.