Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 8 - Sequences and Infinite Series - 8.2 Sequences - 8.2 Exercises - Page 616: 30

Answer

$0$

Work Step by Step

Definition of a sequence defined by a function: Let us consider a function $f(x)$ whose limit $\lim\limits_{x \to \infty} f(x)$ exists then the sequence $a_n=f(n)$ will converge to the same limit. That is, $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} f(x)$ Here, in this problem we have $a_n=n [1-\cos (1/n)]$ and $f(x)=x [1-\cos (1/x)]$ Next, $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} x [1-\cos (1/x)]$ or, $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} \dfrac{1-\cos (1/x)}{1/x}=\lim\limits_{x \to \infty} \dfrac{\sin^2(1/2x)}{1/2x}$ or, $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} \dfrac{\sin^2(1/2x)}{(1/2x)^2} \times \dfrac{1}{2x}$ Thus. $\lim\limits_{n \to \infty} a_n=(1)(0)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.