Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 8 - Sequences and Infinite Series - 8.2 Sequences - 8.2 Exercises - Page 616: 57

Answer

converges to $0$

Work Step by Step

Definition of a sequence defined by a function: Let us consider a function $f(x)$ whose limit $\lim\limits_{x \to \infty} f(x)$ exists then the sequence $a_n=f(n)$ will converge to the same limit. That is, $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} f(x)$ Here, in this problem we have $a_n=\dfrac{2 \tan^{-1} n}{n^3+4}$ and $f(x)=\dfrac{2 \tan^{-1} x}{x^3+4}$ Next, $\lim\limits_{n \to \infty} a_n=\lim\limits_{x \to \infty} \dfrac{2 \tan^{-1} x}{x^3+4}$ or, $\lim\limits_{n \to \infty} a_n= \dfrac{2 \lim\limits_{x \to \infty} \tan^{-1} x}{\lim\limits_{x \to \infty}(x^3+4)}=\dfrac{2 \tan^{-1} (\infty)}{\infty}$ or, $\lim\limits_{n \to \infty} a_n= \dfrac{(2) (\dfrac{\pi}{2})}{\infty}$ Thus. $\lim\limits_{n \to \infty} a_n=0$;so the sequence converges to $0$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.