Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 4 - Energy Analysis of Closed Systems - Problems - Page 203: 4-79E

Answer

a) $\Delta u=49.29\ Btu/lbm$ $\Delta h=55.08\ Btu/lbm$ b) $\Delta u=49.96\ Btu/lbm$ $\Delta h=49.96\ Btu/lbm$ c) $\Delta u=\Delta h=50\ Btu/lbm$

Work Step by Step

a) Compressible liquid model: $u(T,P)=u_{T_{sat}};\ h(T,P)=h_{T_{sat}}+v_{sat}(P-P_{sat})$ From Table A-4E: $u_{1,T_{sat}}=18.07\ Btu/lbm,\ h_{1,T_{sat}}=18.07\ Btu/lbm,\ v_{1,sat}=0.01602\ ft³/lbm,$ $P_{1,sat}=0.17812\ psia$ Hence: $u_1=18.07\ Btu/lbm$ $h_1=18.21\ Btu/lbm$ From table A-7E: $u_2=67.36\ Btu/lbm$ $h_2=73.30\ Btu/lbm$ Therefore: $\Delta u=49.29\ Btu/lbm$ $\Delta h=55.08\ Btu/lbm$ b) Incompressible liquid model: $u(T,P)=u_{T_{sat}};\ h(T,P)=h_{T_{sat}}$ From table A-4E: $u_{2,T_{sat}}=68.03\ Btu/lbm,\ h_{2,T_{sat}}=68.03\ Btu/lbm$ Hence: $\Delta u=49.96\ Btu/lbm$ $\Delta h=49.96\ Btu/lbm$ c) Specific heat model: $\Delta u=\Delta h =c\Delta T$ With: $c=1.00 Btu/lbm.°R, \Delta T=100°F-50°F=50°R$ $\Delta u=\Delta h=50\ Btu/lbm$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.