Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 2 - Energy, Energy Transfer, and General Energy Analysis - Problems - Page 103: 2-74

Answer

$\eta_{pump}=91.79%$

Work Step by Step

Here we have a change of pressure and velocity then: $\Delta E_{fluid}=Q\Delta P+\frac{1}{2}m\Delta V^2=Q*(\Delta P+\frac{1}{2}\rho \Delta V^2)$ First we calculate the areas of the entrance (1) and the exit (2): $A_{1}=\frac{\pi D_{1}^2}{4}=\frac{\pi*(0.08m)^2}{4}=0.005027m^2$ $A_{2}=\frac{\pi D_{2}^2}{4}=\frac{\pi*(0.12m)^2}{4}=0.011310m^2$ Now we calculate the velocities at the entrance (1) and the exit (2) of the pump: $V_{1}=\frac{Q}{A_{1}}=\frac{0.1\frac{m^3}{s}}{0.005027m^2}=19.89\frac{m}{s}$ $V_{2}=\frac{Q}{A_{2}}=\frac{0.1\frac{m^3}{s}}{0.011310m^2}=8.84\frac{m}{s}$ Then: $\Delta E_{fluid}=0.1\frac{m^3}{s}*(500kPa+\frac{1}{2}*860\frac{kg}{m^3}*((8.84\frac{m}{s})^2-(19.89\frac{m}{s})^2)$ $\Delta E_{fluid}=36.35kW$ The mechanical energy suministrated is: $E_{m}=\eta E_{e}=0.90*44kW=39.6kW$ Then the efficiency of the pump is: $\eta_{pump}=\frac{E_{fluid}}{E_{m}}=\frac{36.35kW}{39.6kW}=0.9179$ $\eta_{pump}=91.79%$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.