Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 641: 11-27

Answer

$2 7 . 1 \%$

Work Step by Step

The power input is $$ \dot{W}_{\mathrm{in}}=\dot{Q}_H-\dot{Q}_L=5500-3500=2000 \mathrm{~kJ} / \mathrm{h}=(2000 \mathrm{~kJ} / \mathrm{h})\left(\frac{1 \mathrm{~kW}}{3600 \mathrm{~kJ} / \mathrm{h}}\right)=\mathbf{0 . 5 5 5 6\ k W} $$ The COP is $$ \mathrm{COP}_{\mathrm{R}}=\frac{\dot{Q}_L}{\dot{W}_{\text {in }}}=\frac{(3500 / 3600) \mathrm{kW}}{0.5556 \mathrm{~kW}}=\mathbf{1 . 7 5} $$ The COP of the Carnot cycle operating between the space and the ambient is $$ \mathrm{COP}_{\text {Camot }}=\frac{T_L}{T_H-T_L}=\frac{258 \mathrm{~K}}{(298-258) \mathrm{K}}=6.45 $$ The second-law efficiency is then $$ \eta_{\Pi}=\frac{\mathrm{COP}_{\mathrm{R}}}{\mathrm{COP}_{\text {Camot }}}=\frac{1.75}{6.45}=0.271=\mathbf{2 7 . 1} \% $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.