Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 641: 11-21

Answer

$2.03$

Work Step by Step

$$ \begin{aligned} & \left.\begin{array}{l} P_4=120\ \mathrm{kPa} \\ x_4=0.34 \end{array}\right\} h_4=95.41 \mathrm{~kJ} / \mathrm{kg} \\ & h_3=h_4 \\ & \left.\begin{array}{l} h_3=95.41 \mathrm{~kJ} / \mathrm{kg} \\ x_3=0 \text { (sat_liq.) } \end{array}\right\} P_3=799\ \mathrm{kPa} \equiv 800\ \mathrm{kPa} \\ & P_2=P_3 \\ & \left.\begin{array}{l} P_2=799\ \mathrm{kPa} \\ T_2=70^{\circ} \mathrm{C} \end{array}\right\} h_2=306.92 \mathrm{~kJ} / \mathrm{kg} \\ & \left.\begin{array}{l} P_1=P_4=120\ \mathrm{kPa} \\ x_1=1 \text { (sat. vap.) } \end{array}\right\} h_1=236.99 \mathrm{~kJ} / \mathrm{kg} \end{aligned} $$ The mass flow rate of the refrigerant is determined from $$ \dot{m}=\frac{\dot{W}_{\text {in }}}{h_2-h_1}=\frac{0.45 \mathrm{~kW}}{(306.92-236.99) \mathrm{kJ} / \mathrm{kg}}=0.006435 \mathrm{~kg} / \mathrm{s} $$ (c) The refrigeration load and the COP are $$ \begin{aligned} \dot{Q}_L & =\dot{m}\left(h_1-h_4\right) \\ & =(0.06435 \mathrm{~kg} / \mathrm{s})(236.99-95.41) \mathrm{kJ} / \mathrm{kg} \\ & =0.9111 \mathrm{~kW} \\ \text { COP } & =\frac{\dot{Q}_L}{\dot{W}_{i n}}=\frac{0.9111 \mathrm{~kW}}{0.45 \mathrm{~kW}}=2.03 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.