Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 641: 11-25C

Answer

$T_0=T_L$

Work Step by Step

$$ \eta_{\mathrm{II}, \mathrm{HP}}=\frac{\dot{E} x_{\dot{Q}_H}}{\dot{W}}=\frac{\dot{W_{\min }}}{\dot{W}}=1-\frac{\dot{E} x_{\text {dest,total }}}{\dot{W}} $$ Substituting $$ \dot{W}=\frac{\dot{Q}_H}{\mathrm{COP}_{\mathrm{HP}}} \quad \text { and } \quad \dot{E} x_{\dot{Q}_H}=\dot{Q}_H\left(1-\frac{T_0}{T_H}\right) $$ The second-law efficiency equation $$ \eta_{\mathrm{II}, \mathrm{HP}}=\frac{\dot{E} \dot{x}_{\dot{Q}_H}}{\dot{W}}=\frac{\dot{Q}_H\left(1-\frac{T_0}{T_H}\right)}{\frac{\dot{Q}_H}{\mathrm{COP}_{\mathrm{HP}}}}=\dot{Q}_H\left(1-\frac{T_0}{T_H}\right) \frac{\mathrm{COP}_{\mathrm{HP}}}{\dot{Q}_H}=\frac{\mathrm{COP}_{\mathrm{HP}}}{\frac{T_H}{T_H-T_L}}=\frac{\mathrm{COP}_{\mathrm{HP}}}{\mathrm{COP}_{\text {Camot }}} $$ since $T_0=T_L$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.