Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 28 - Quantum Mechanics of Atoms - General Problems - Page 828: 58

Answer

$2.65\times10^{-8}$ $2.65\times10^{-8}$

Work Step by Step

We know that the fractional energy uncertainty is given by $\dfrac{\Delta E}{E}$ where $\Delta E=\dfrac{\hslash}{\Delta t}=\dfrac{h}{2\pi \Delta t}$ and $E=hf=\dfrac{hc}{\lambda}$. Thus, $$\dfrac{\Delta E}{E}=\dfrac{\dfrac{h}{2\pi \Delta t}}{\dfrac{hc}{\lambda}}$$ $$\dfrac{\Delta E}{E}= \dfrac{\color{red}{\bf\not}h}{2\pi \Delta t} \dfrac{\lambda}{\color{red}{\bf\not}hc} $$ $$\dfrac{\Delta E}{E}= \dfrac{ \lambda}{2\pi c \Delta t} $$ Plugging the known; $$\dfrac{\Delta E}{E}= \dfrac{ 500\times10^{-9}}{2\pi \times3\times10^8 \times 10\times10^{-9} } $$ $$\dfrac{\Delta E}{E}=\color{red}{\bf 2.65\times10^{-8}}$$ _____________________________________________ We know that the wavelength’s fractional uncertainty is given by $$ \lambda+\Delta \lambda=\dfrac{hc}{E+\Delta E}$$ $$ \lambda+\Delta \lambda=\dfrac{hc}{E\left(1+\frac{\Delta E}{E}\right)}$$ where $hc/E=\lambda$ $$ \lambda+\Delta \lambda=\lambda\left(1+\frac{\Delta E}{E}\right)^{-1}$$ Using the binomial expansion for $\left(1+\frac{\Delta E}{E}\right)^{-1}$ $$ \lambda+\Delta \lambda=\lambda\left(1-\frac{\Delta E}{E}\right) $$ $$ \color{red}{\bf\not}\lambda+\Delta \lambda=\color{red}{\bf\not}\lambda -\frac{\Delta E}{E}\lambda $$ $$ \Delta \lambda= -\frac{\Delta E}{E}\lambda $$ Thus, $$\left|\dfrac{\Delta \lambda}{ \lambda}\right|=\frac{\Delta E}{E}$$ Plugging from above; $$\dfrac{\Delta \lambda}{ \lambda}=\color{red}{\bf 2.65\times10^{-8}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.