Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 18 - Electric Currents - General Problems - Page 524: 87

Answer

a. 12 W. b. 4.6 W.

Work Step by Step

a. The wasted power is due to heating losses in the wire. Calculate the current from equation 18–5. $$P_{lost}=I^2R=\frac{P^2}{V^2}R=\frac{P^2}{V^2}\frac{\rho L}{A}=\frac{P^2}{V^2}\frac{\rho L}{\pi r^2}$$ $$P_{lost} =\frac{P^2}{V^2}\frac{4 \rho L}{\pi d^2}$$ $$P_{lost} =\frac{(1450W)^2}{(120V)^2}\frac{4 (1.68\times10^{-8}\Omega \cdot m)(25.0m)}{\pi (0.00259m)^2}\approx 12W$$ b. Repeat, using a larger wire. $$P_{lost}=I^2R=\frac{P^2}{V^2}R=\frac{P^2}{V^2}\frac{\rho L}{A}=\frac{P^2}{V^2}\frac{\rho L}{\pi r^2}$$ $$P_{lost} =\frac{P^2}{V^2}\frac{4 \rho L}{\pi d^2}$$ $$P_{lost} =\frac{(1450W)^2}{(120V)^2}\frac{4 (1.68\times10^{-8}\Omega \cdot m)(25.0m)}{\pi (0.00412m)^2}\approx 4.6W$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.