Answer
a.
$f_3=222Hz$
$f_5=370Hz$
$f_7=517Hz$
b.
$f_2=296Hz$
$f_3=444Hz$
$f_4=591Hz$
Work Step by Step
a. See figure 12-12. For a pipe is closed at one end, the fundamental frequency is $f_1=\frac{v}{4 \mathcal{l}}$, and only the odd harmonic frequencies are present.
$f_1=\frac{343 m/s}{4 (1.16m)}=73.9Hz$
$f_3=3f_1=222Hz$
$f_5=5f_1=370Hz$
$f_7=7f_1=517Hz$
b. See figure 12-11. For a pipe open at both ends, the fundamental frequency is $f_1=\frac{v}{2 \mathcal{l}}$, and all harmonic frequencies are present.
$f_1=\frac{343 m/s}{2 (1.16m)}=147.8 \approx 148 Hz$
$f_2=2f_1=296Hz$
$f_3=3f_1=444Hz$
$f_4=4f_1=591Hz$