Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 3 - Vectors and Coordinate Systems - Exercises and Problems - Page 83: 25

Answer

$\vec C= -( 4.9\;{\rm m})\;\hat i-( 1.89\;{\rm m})\;\hat j $

Work Step by Step

We told that $$\vec A+\vec B+\vec C=0$$ and we need to find $\vec C$ in component form. So, $$\vec C=-\vec A-\vec B $$ $$\vec C=-(A_x\;\hat i+A_y\;\hat j)-(B_x\;\hat i+B_y\;\hat j) $$ $$\vec C=- A_x\;\hat i-A_y\;\hat j - B_x\;\hat i-B_y\;\hat j $$ $$\vec C=(- A_x- B_x)\;\hat i+(-A_y-B_y)\;\hat j $$ $$\vec C=-( A_x+ B_x)\;\hat i-( A_y+B_y)\;\hat j\tag 1 $$ We know that the horizontal component of any vector relative to the positive $x$-direction is given by $$V_x=V\cos \theta$$ and the vertical component $$V_y=V\sin\theta$$ where $\theta$ is the angle counterclockwise from the positive $x$-axis to the vector. So, $\theta_A=\bf 40^\circ $ while $\theta_B=360^\circ -20^\circ=\bf 340^\circ$ Plugging all that into (1); $$\vec C=-( |\vec A|\cos \theta_A+ |\vec B|\cos \theta_B)\;\hat i-( |\vec A|\sin\theta_A+|\vec B|\sin\theta_B)\;\hat j $$ $$\vec C=-( 4\cos40^\circ + 2\cos 340^\circ)\;\hat i-( 4\sin40^\circ+2\sin340^\circ)\;\hat j $$ $$\boxed{\vec C= ( -4.9\;{\rm m})\;\hat i-( 1.89\;{\rm m})\;\hat j } $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.