Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 26 - The Electric Field - Exercises and Problems - Page 776: 32

Answer

See the detailed answer below.

Work Step by Step

First of all, we need to draw the electric field directions on each point. $\textbf{At point 1:}$ From the geometry of the first figure below, we can see that $\theta_1=\theta_2$, $r_{11}=r_{21}=\sqrt{a^2+(2a)^2}=\sqrt{5}\;a$, $\sin\theta=\dfrac{a}{\sqrt{5}\;a}=\dfrac{1}{\sqrt{5}}$, $\cos\theta=\dfrac{2a}{\sqrt{5}\;a}=\dfrac{2}{\sqrt{5}}$, Hence, $$E_{1\rightarrow1}=\dfrac{k|q_1|}{r_{11}^2}(\sin\theta\;\hat i+\cos\theta\;\hat j)$$ Plug the known; $$E_{1\rightarrow1}=\dfrac{2kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i+\dfrac{2}{\sqrt{5}}\;\hat j)\tag 1$$ And $$E_{2\rightarrow1}=\dfrac{k|q_2|}{r_{21}^2}(\sin\theta\;\hat i-\cos\theta\;\hat j)$$ Plug the known; $$E_{2\rightarrow1}=\dfrac{kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i-\dfrac{2}{\sqrt{5}}\;\hat j)\tag 2$$ So the net electric field at point 1 is given by $$E_{1,net}=E_{1\rightarrow1}+E_{2\rightarrow1}$$ Plug from (1) and (2), $$E_{1,net}=\dfrac{2kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i+\dfrac{2}{\sqrt{5}}\;\hat j)+\dfrac{kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i-\dfrac{2}{\sqrt{5}}\;\hat j)$$ $$E_{1,net}=\dfrac{ kq}{5\sqrt{5}a^2}\left[ (2\;\hat i+4\;\hat j)+ (1\;\hat i-2\;\hat j)\right]$$ $$\boxed{E_{1,net}=\dfrac{ kq}{5\sqrt{5}a^2}\left( 3\;\hat i+2\;\hat j \right)}$$ $\textbf{At point 2:}$ $$E_{1\rightarrow2}=-\dfrac{k|q_1|}{r_{12}^2}\;\hat i$$ Plug the known; $$E_{1\rightarrow2}=-\dfrac{2kq}{a^2}\;\hat i\tag 3$$ $$E_{2\rightarrow2}= \dfrac{k|q_2|}{r_{22}^2}\;\hat i$$ Plug the known; $$E_{2\rightarrow2}= \dfrac{ kq}{9a^2}\;\hat i\tag 4$$ So the net electric field at point 2 is given by $$E_{2,net}=E_{1\rightarrow2}+E_{2\rightarrow2}$$ Plug from (3) and (4), $$E_{2,net}=-\dfrac{2kq}{a^2}\;\hat i+ \dfrac{ kq}{9a^2}\;\hat i=\dfrac{-18kq+kq}{9a^2}\;\hat i$$ $$\boxed{E_{2,net} =\dfrac{-17kq}{9a^2}\;\hat i}$$ $\textbf{At point 3:}$ $$E_{1\rightarrow3}=\dfrac{k|q_1|}{r_{13}^2}\;\hat i$$ Plug the known; $$E_{1\rightarrow3}=\dfrac{2kq}{9a^2}\;\hat i\tag 7$$ $$E_{2\rightarrow3}=- \dfrac{k|q_2|}{r_{23}^2}\;\hat i$$ Plug the known; $$E_{2\rightarrow3}= -\dfrac{ kq}{a^2}\;\hat i\tag 8$$ So the net electric field at point 3 is given by $$E_{3,net}=E_{1\rightarrow3}+E_{2\rightarrow3}$$ Plug from (7) and (8), $$E_{3,net}=\dfrac{2kq}{9a^2}\;\hat i -\dfrac{ kq}{a^2}\;\hat i=\dfrac{2kq-9kq}{9a^2}\;\hat i$$ $$\boxed{E_{3,net} =\dfrac{ -7kq}{9a^2}\;\hat i}$$ $\textbf{At point 4:}$ From the geometry of the first figure below, we can see that $\theta_1=\theta_2$, $r_{14}=r_{24}=\sqrt{a^2+(2a)^2}=\sqrt{5}\;a$, $\sin\theta=\dfrac{a}{\sqrt{5}\;a}=\dfrac{1}{\sqrt{5}}$, $\cos\theta=\dfrac{2a}{\sqrt{5}\;a}=\dfrac{2}{\sqrt{5}}$, Hence, $$E_{1\rightarrow4}=\dfrac{k|q_1|}{r_{14}^2}(\sin\theta\;\hat i-\cos\theta\;\hat j)$$ Plug the known; $$E_{1\rightarrow4}=\dfrac{2kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i-\dfrac{2}{\sqrt{5}}\;\hat j)\tag 5$$ And $$E_{2\rightarrow4}=\dfrac{k|q_2|}{r_{24}^2}(\sin\theta\;\hat i+\cos\theta\;\hat j)$$ Plug the known; $$E_{2\rightarrow4}=\dfrac{kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i+\dfrac{2}{\sqrt{5}}\;\hat j)\tag 6$$ So the net electric field at point 4 is given by $$E_{4,net}=E_{1\rightarrow4}+E_{2\rightarrow4}$$ Plug from (5) and (6), $$E_{4,net}=\dfrac{2kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i-\dfrac{2}{\sqrt{5}}\;\hat j)+\dfrac{kq}{5a^2}(\dfrac{1}{\sqrt5}\;\hat i+\dfrac{2}{\sqrt{5}}\;\hat j)$$ $$E_{4,net}=\dfrac{ kq}{5\sqrt{5}a^2}\left[ (2\;\hat i-4\;\hat j)+ (1\;\hat i+2\;\hat j)\right]$$ $$\boxed{E_{4,net}=\dfrac{ kq}{5\sqrt{5}a^2}\left( 3\;\hat i-2\;\hat j \right)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.