Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 14 - Oscillations - Exercises and Problems - Page 404: 50

Answer

$1.02\times10^{-21}\;\rm kg$

Work Step by Step

The cantilever here works as a spring and then it must have a spring constant $k$ and this is unchangeable whether we attached the DNA molecule or not. The spring constant is given by $$\omega=\sqrt{\dfrac{k}{m}}$$ where $\omega=2\pi f$ where $f$ is the frequency. So that $$2\pi f =\sqrt{\dfrac{k}{m}}$$ And in the first case, without attaching the DNA: $$2\pi f _1=\sqrt{\dfrac{k}{m_1}}$$ where $m_1=\frac{1}{3}M$ where $M$ is the mass of the vibrating cantilever. $$2\pi f_1=\sqrt{\dfrac{3k}{M}}\tag 1$$ In the second case, when attaching the DNA: $$2\pi f _2=\sqrt{\dfrac{k}{m_2}}$$ where $m_2=\frac{1}{3}M+m$ where $m$ is the mass of the DNA. $$2\pi f _2=\sqrt{\dfrac{k}{\frac{1}{3}M+m}}\tag 2$$ We are given that $f_1-f_2=50\;\rm Hz$, so $f_2=f_1-50$ Plugging into (2); $$2\pi (f_1-50)=\sqrt{\dfrac{k}{\frac{1}{3}M+m}}\tag 3$$ Divide (1) by (3); $$\dfrac{2\pi f_1}{2\pi (f_1-50)}=\dfrac{\sqrt{\dfrac{3k}{M}}}{\sqrt{\dfrac{k}{\frac{1}{3}M+m}}}$$ $$\dfrac{ f_1}{ f_1-50}=\sqrt{\dfrac{{\dfrac{3k}{M}}}{{\dfrac{k}{\frac{1}{3}M+m}}}}$$ $$\dfrac{ f_1}{ f_1-50}=\sqrt{ {\dfrac{3 \color{red}{\bf\not} k}{M}} \dfrac{[\frac{1}{3}M+m]}{ \color{red}{\bf\not} k}}$$ $$\dfrac{ f_1}{ f_1-50}=\sqrt{ {\dfrac{M+3m }{M}} }$$ Squaring both sides; $$\dfrac{ f_1^2}{( f_1-50)^2}= {\dfrac{M+3m }{M}} $$ Hence, $$\dfrac{ M f_1^2}{( f_1-50)^2}-M= 3m $$ $$m=\dfrac{ M f_1^2}{3( f_1-50)^2}-\dfrac{M}{3}\tag 4$$ Now we need to find the mass of the cantilever $M$ which is given by the density law; $$M=\rho V=\rho Ah$$ $$M=2300\;\rm \frac{kg}{m^3}(4000\;\times 10^{-9}\;m)(400\times 10^{-9}\;m)(100\times 10^{-9}\;m)$$ $$M=\bf 3.68\times 10^{-16}\;\rm kg$$ Plugging into (4) and plug the other known $f_1=12\times 10^6\;\rm Hz$ $$m=\dfrac{ (3.68\times 10^{-16})(12\times 10^6)^2}{3( [12\times 10^6]-50)^2}-\dfrac{(3.68\times 10^{-16})}{3} $$ $$m=\color{red}{\bf 1.02\times10^{-21}}\;\rm kg$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.