Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 14 - Oscillations - Exercises and Problems - Page 404: 41

Answer

$1.02\;\rm m/s$

Work Step by Step

a) First, we need to find the spring constant. So we need to use the conservation of energy. $$E_1=E_2$$ $$K_1+U_{s1}=K_2+U_{s2}$$ $$ \color{red}{\bf\not}\frac{1}{2}mv_1^2+ \color{red}{\bf\not}\frac{1}{2}kx_1^2= \color{red}{\bf\not}\frac{1}{2}mv_2^2+ \color{red}{\bf\not}\frac{1}{2}kx_2^2$$ $$ mv_1^2+ kx_1^2= mv_2^2+ kx_2^2$$ Solving for $k$; $$ mv_1^2-mv_2^2 = kx_2^2-kx_1^2=k(x_2^2- x_1^2)$$ $$k=\dfrac{m(v_1^2-v_2^2) }{x_2^2- x_1^2}$$ Plugging the known; $$k=\dfrac{(0.300)[(95.4\times 10^{-2})^2-(71.4\times 10^{-2})^2] }{0.06^2- 0.03^2}$$ $$k=\bf 44.48\;\rm N/m$$ Now we can find the maximum speed by applying the total energy law. $$E_{tot}=K_1+U_{s1}=\frac{1}{2}mv_{\rm max}$$ $$ \color{red}{\bf\not}\frac{1}{2}mv_1^2+ \color{red}{\bf\not}\frac{1}{2}kx_1^2= \color{red}{\bf\not}\frac{1}{2}mv_{\rm max}$$ $$ v_{\rm max}^2=\dfrac{mv_1^2+ kx_1^2}{m}$$ $$ v_{\rm max}=\sqrt{v_1^2+\dfrac{ kx_1^2}{m}}$$ $$ v_{\rm max}=\sqrt{(95.4\times 10^{-2})^2+\dfrac{ (44.48)(0.03)^2}{0.30}}$$ $$ v_{\rm max}=\color{red}{\bf 1.02}\;\rm m/s$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.