Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 14 - The Ideal Gas Law and Kinetic Theory - Problems - Page 386: 52

Answer

$t=2.3\times10^{6}s$ (about 27 days)

Work Step by Step

First of all, let's apply Fick's law of diffusion $m=\frac{(DA\Delta C)t}{L}$ to find the time. $m=\frac{(DA\Delta C)t}{L}=>t=\frac{mL}{DA\Delta C}=\frac{mL}{DA(C_{2}-C_{1})}$ $t=\frac{mL}{DA(C_{2}-0)}=\frac{mL}{DAC_{2}}-(1)$ Let's apply the ideal gas law $PV=nRT$ to find the value of $C_{2}$ $PV=nRT=\frac{m}{M}RT=>P=(\frac{m}{V})\frac{RT}{M}=\frac{\rho RT}{M}$ $\rho=\frac{PM}{RT}=C_{2}$ ; Let's plug known values into this equation. $C_{2}=\frac{(2400\space Pa)(0.018\space kg/mol)}{(8.31\space J/mol\space K)(293\space K)}=1.77\times10^{-2}kg/m^{3}-(2)$ Substituting values into equation (1) gives, $$t=\frac{(2\times10^{-3}kg)(0.15\space m)}{(2.4\times10^{-5}m^{2}/s)(3\times10^{-4}m^{2})(1.77\times10^{-2}kg/m^{3})}$$ $t=2.3\times10^{6}s$ (about 27 days)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.