Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 33 - Electromagnetic Waves - Problems - Page 1006: 66c

Answer

The angle of refraction is $40^{\circ}$

Work Step by Step

Let $\theta_2$ be the refracted angle inside the block. We can use Snell's law to find $\theta_2$: $n_2~sin~\theta_2 = n_1~sin~\theta_1$ $sin~\theta_2 = \frac{n_1~sin~\theta_1}{n_2}$ $\theta_2 = sin^{-1}~(\frac{n_1~sin~\theta_1}{n_2})$ $\theta_2 = sin^{-1}~(\frac{1.00~sin~40^{\circ}}{1.56})$ $\theta_2 = sin^{-1}~(0.41204)$ $\theta_2 = 24.3^{\circ}$ If the ray travels a horizontal distance of $W = 3.00~cm$, we can find the vertical distance $y$ that the ray travels: $\frac{y}{W} = tan~\theta_2$ $y = W~tan~\theta_2$ $y = (3.00~cm)~tan~24.3^{\circ}$ $y = 1.36~cm$ Since $y \lt H$, then the point of first reflection is on side 3. Let $\theta_3$ be the refracted angle in the air. We can use Snell's law to find $\theta_3$: $n_3~sin~\theta_3 = n_2~sin~\theta_2$ $sin~\theta_3 = \frac{n_2~sin~\theta_2}{n_3}$ $\theta_3 = sin^{-1}~(\frac{n_2~sin~\theta_2}{n_3})$ $\theta_3 = sin^{-1}~(\frac{1.56~sin~24.3^{\circ}}{1.00})$ $\theta_3 = sin^{-1}~(0.6420)$ $\theta_3 = 40^{\circ}$ The angle of refraction is $40^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.