Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 29 - Magnetic Fields Due to Currents - Problems - Page 861: 47b

Answer

$B = 1.0\times 10^{-7}~T$

Work Step by Step

We can find the enclosed current: $i_{enc} = \int_{0}^{a/2}~\frac{2\pi~r~J_0~r~dr}{a}$ $i_{enc} = \int_{0}^{a/2}~\frac{2\pi~r^2~J_0~dr}{a}$ $i_{enc} = \frac{2~J_0~\pi~r^3}{3a} \Big \vert_{0}^{a/2}$ $i_{enc} = \frac{2~J_0~\pi~a^3}{24a}-0$ $i_{enc} = \frac{J_0~\pi~a^2}{12}$ $i_{enc} = \frac{(310~A/m^2)~(\pi)~(0.0031~m)^2}{12}$ $i_{enc} = 1.56~mA$ We can find the magnitude of the magnetic field at $r = \frac{a}{2}$: $\int~B\cdot ds = \mu_0~i_{enc}$ $B\cdot 2\pi~r = \mu_0~i_{enc}$ $B = \frac{\mu_0~i_{enc}}{2\pi~a}$ $B = \frac{(4\pi\times 10^{-7}~H/m)(1.56~mA)}{(2\pi)(0.0031~m)}$ $B = 1.0\times 10^{-7}~T$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.