Answer
\[
\int \mathbf{B} \cdot d\mathbf{s} =-1.6\times10^{-5} {\text{Tm}}
\]
Work Step by Step
We can find \(\int \mathbf{B} \cdot d\mathbf{s}\):
\[
\int \mathbf{B} \cdot d\mathbf{s} = \mu_0 i_{\text{enc}}
\]
\[
\int \mathbf{B} \cdot d\mathbf{s} = \mu_0 (-i_2-i_2 - i_1)=4\pi\times10^{-7}(-5-5-3)=-1.6\times10^{-5} {\text{Tm}}
\]