Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 14 - Fluids - Problems - Page 409: 45

Answer

$0.126\ m^{3}$

Work Step by Step

The density of the casting equals $\rho_{c}= \displaystyle \frac{m_{casting}}{V_{casting}}= \displaystyle \frac{m_{iron}}{V_{iron}+V_{cavities}}$ so, $ \displaystyle \frac{V_{iron}+V_{cavities.}}{m_{iron}}=\frac{1}{\rho_{c}} $ $V_{iron}+V_{cavities}=\displaystyle \frac{m_{iron}}{\rho_{c}} $ $V_{cavities}=\displaystyle \frac{m_{iron}}{\rho_{c}} -V_{iron}\qquad (*)$ The mass of the iron equals the mass of the (iron+cavities), In air, $m_{iron}g=6000N \displaystyle \Rightarrow m_{iron}=\frac{6000N}{g}$, The volume of the iron is $V=\displaystyle \frac{m_{iron}}{\rho_{iron}}=\frac{6000N}{(9.8m/s^{2})(7.87\times 10^{3}\frac{kg}{m^{3}})}$ In air, we have $\rho_{c}\cdot V_{casting}\cdot g=6000N$ In water, the buoyant force equals the difference in weights (air/water) $\rho_{w}\cdot V_{casting}\cdot g=2000N$ Dividing the last two equations, $\displaystyle \frac{\rho_{c}}{\rho_{w}}=3.00 \displaystyle \quad\Rightarrow\quad\rho_{c}=3.00\rho_{w}=3000\frac{kg}{m^{3}}$ Insert these values into $(*)$ $V_{cavities}=\displaystyle \frac{\frac{6000N}{(9.8m/s^{2})}}{3000\frac{kg}{m^{3}}} -\frac{6000N}{(9.8m/s^{2})(7.87\times 10^{3}\frac{kg}{m^{3}})}=0.126m^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.