College Physics (4th Edition)

Published by McGraw-Hill Education
ISBN 10: 0073512141
ISBN 13: 978-0-07351-214-3

Chapter 22 - Problems - Page 865: 51

Answer

We can see the graph of $I = I_0~cos^2~\theta$ below.
1535603467

Work Step by Step

We can use Malus' law to sketch the graph of $I$ as a function of $\theta$. Note that $I = I_0~cos^2~\theta$ We can find $I$ for these angles $\theta$: When $\theta = 0^{\circ}$, $I = I_0~cos^2~0^{\circ} = I_0$ When $\theta = 30^{\circ}$, $I = I_0~cos^2~30^{\circ} = \frac{3I_0}{4}$ When $\theta = 45^{\circ}$, $I = I_0~cos^2~45^{\circ} = \frac{I_0}{2}$ When $\theta = 60^{\circ}$, $I = I_0~cos^2~60^{\circ} = \frac{I_0}{4}$ When $\theta = 90^{\circ}$, $I = I_0~cos^2~90^{\circ} = 0$ When $\theta = 120^{\circ}$, $I = I_0~cos^2~120^{\circ} = \frac{I_0}{4}$ When $\theta = 135^{\circ}$, $I = I_0~cos^2~135^{\circ} = \frac{I_0}{2}$ When $\theta = 150^{\circ}$, $I = I_0~cos^2~150^{\circ} = \frac{3I_0}{4}$ When $\theta = 180^{\circ}$, $I = I_0~cos^2~180^{\circ} = I_0$ When $\theta = 210^{\circ}$, $I = I_0~cos^2~210^{\circ} = \frac{3I_0}{4}$ When $\theta = 225^{\circ}$, $I = I_0~cos^2~225^{\circ} = \frac{I_0}{2}$ When $\theta = 240^{\circ}$, $I = I_0~cos^2~240^{\circ} = \frac{I_0}{4}$ When $\theta = 270^{\circ}$, $I = I_0~cos^2~270^{\circ} = 0$ When $\theta = 300^{\circ}$, $I = I_0~cos^2~300^{\circ} = \frac{I_0}{4}$ When $\theta = 315^{\circ}$, $I = I_0~cos^2~315^{\circ} = \frac{I_0}{2}$ When $\theta = 330^{\circ}$, $I = I_0~cos^2~330^{\circ} = \frac{3I_0}{4}$ When $\theta = 360^{\circ}$, $I = I_0~cos^2~360^{\circ} = I_0$ We can see the graph of $I = I_0~cos^2~\theta$ below.
Small 1535603467
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.