College Physics (4th Edition)

Published by McGraw-Hill Education
ISBN 10: 0073512141
ISBN 13: 978-0-07351-214-3

Chapter 16 - Problems - Page 613: 19

Answer

The magnitude of the net electric force exerted by one base on the other is $3.99 \times 10^{-10} N$

Work Step by Step

The values we have are: $k = 8.99 \times 10^9\ Nm^2/C^2$ $N = (-0.3)(1.602 \times 10^{-19}\ C) = -4.806 \times 10^{-20}\ C$ $H = (0.3)(1.602 \times 10^{-19}\ C) = 4.806 \times 10^{-20}\ C$ $O = (-0.4)(1.602 \times 10^{-19}\ C) = -6.408 \times 10^{-20}\ C$ $C = (0.4)(1.602 \times 10^{-19}\ C) = 6.408 \times 10^{-20}\ C$ Now we calculate the net force for each charge: $F_{NO} = \dfrac{k*N*O}{L^2} = \dfrac{(8.99 \times 10^9\ Nm^2/C^2)(-4.806 \times 10^{-20}\ C)(-6.408 \times 10^{-20}\ C)}{(3\times 10^{-10}\ m )^2} = -3.08 \times 10^{-10}\ N$ $F_{NC} = \dfrac{k*N*C}{L^2} = \dfrac{(8.99 \times 10^9\ Nm^2/C^2)(-4.806 \times 10^{-20}\ C)(6.408 \times 10^{-20}\ C)}{(4.2\times 10^{-10}\ m )^2} = 1.57 \times 10^{-10}\ N$ $F_{HO} = \dfrac{k*H*O}{L^2} = \dfrac{(8.99 \times 10^9\ Nm^2/C^2)(4.806 \times 10^{-20}\ C)(-6.408 \times 10^{-20}\ C)}{(1.8\times 10^{-10}\ m )^2} = 8.55 \times 10^{-10}\ N$ $F_{HC} = \dfrac{k*H*C}{L^2} = \dfrac{(8.99 \times 10^9\ Nm^2/C^2)(4.806 \times 10^{-20}\ C)(6.408 \times 10^{-20}\ C)}{(3\times 10^{-10}\ m )^2} = -3.08 \times 10^{-10}\ N$ We add up forces: $\sum F = -3.08 \times 10^{-10}\ N + 1.57 \times 10^{-10}\ N + 8.55 \times 10^{-10}\ N - 3.08 \times 10^{-10}\ N = 3.96 \times 10^{-10}\ N $ The magnitude of the net electric force exerted by one base on the other is $3.99 \times 10^{-10} N$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.