Essential University Physics: Volume 1 (4th Edition) Clone

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 18 - Exercises and Problems - Page 344: 74

Answer

The proof is below.

Work Step by Step

When solving for equation 18.4, the book used the following equation: $W = -nRT \int_{V_1}^{V_2}PdV$ We first solve the van der Waals equation for P: $P=\frac{nRT}{v-nb}-a(\frac{n^2}{v^2})$ We plug this into the equation for work: $W = -nRT \int_{V_1}^{V_2}(\frac{nRT}{V-nb}-a(\frac{n^2}{V^2}))dV$ Not surprisingly, when we evaluate this integral, we find: $W = -nRTln(\frac{V_2}{V_1})$ This is the same as equation 18.4.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.