Chemistry: The Molecular Nature of Matter and Change 7th Edition

Published by McGraw-Hill Education
ISBN 10: 007351117X
ISBN 13: 978-0-07351-117-7

Chapter 18 - Problems - Page 820: 18.81

Answer

$pH = 1.80 $ $[OH^-] = 6.2 \times 10^{-13} \space M$ $pOH = 12.20$ $[H_3O^+] = 0.016 $ $[H_2C_3H_2O_4] = 0.184 \space M$ $[HC_3H_2{O_4}^{-}] = 0.016 \space M$ $[C_3H_2{O_4}^{2-}] = 2.0 \times 10^{-6}$

Work Step by Step

- First dissociation: 1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ H_2C_3H_2O_4 ]& [ HC_3H_2{O_4}^- ]& [ H_3O^+ ]\\ Initial& 0.200 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.200 -x& 0 +x& 0 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each concentration is equal to its balance coefficient. $$K_C = \frac{[Products]}{[Reactants]} = \frac{[ HC_3H_2{O_4}^- ][ H_3O^+ ]}{[ H_2C_3H_2O_4 ]}$$ $$K_a = \frac{(x)(x)}{[ H_2C_3H_2O_4 ]_{initial} - x}$$ 3. Assuming $ 0.200 \gt\gt x:$ $$K_a = \frac{x^2}{[ H_2C_3H_2O_4 ]_{initial}}$$ $$x = \sqrt{K_a \times [ H_2C_3H_2O_4 ]_{initial}} = \sqrt{ 1.4 \times 10^{-3} \times 0.200 }$$ $x = 0.017 $ 4. Test if the assumption was correct: $$\frac{ 0.017 }{ 0.200 } \times 100\% = 8.5 \%$$ The percent is greater than 5%, therefore, the approximation is invalid. 5. Return for the original expression and solve for x: $$K_a = \frac{x^2}{[ H_2C_3H_2O_4 ]_{initial} - x}$$ $$K_a [ H_2C_3H_2O_4 ] - K_a x = x^2$$ $$x^2 + K_a x - K_a [ H_2C_3H_2O_4 ] = 0$$ - Using bhaskara: $$x_1 = \frac{- 1.4 \times 10^{-3} + \sqrt{( 1.4 \times 10^{-3} )^2 - 4 (1) (- 1.4 \times 10^{-3} ) ( 0.200 )} }{2 (1)}$$ $$x_1 = 0.016 $$ $$x_2 = \frac{- 1.4 \times 10^{-3} - \sqrt{( 1.4 \times 10^{-3} )^2 - 4 (1) (- 1.4 \times 10^{-3} )( 0.200 )} }{2 (1)}$$ $$x_2 = -0.017 $$ - The concentration cannot be negative, so $x_2$ is invalid. $$x = 0.016 $$ $[H_2C_3H_2O_4] = 0.200 - 0.016 = 0.184 \space M$ ------- Second dissociation: 1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HC_3H_2{O_4}^- ]& [ C_3H_2{O_4}^{2-} ]& [ H_3O^+ ]\\ Initial& 0.016 & 0 & 0.016 \\ Change& -x& +x& +x\\ Equilibrium& 0.016 -x& 0 +x& 0.016 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each pressure is equal to its balance coefficient. $$K_a = \frac{P_{Products}}{P_{Reactants}} = \frac{[ C_3H_2{O_4}^{2-} ][ H_3O^+ ]}{[ HC_3H_2{O_4}^- ]}$$ $$K_a = \frac{(x)( 0.016 + x)}{[ HC_3H_2{O_4}^- ]_{initial} - x}$$ 3. Assuming $0.016 \gt\gt x:$ $$K_a = \frac{(x)( 0.016 )}{[ HC_3H_2{O_4}^- ]_{initial}}$$ $$x = \frac{K_a \times [ HC_3H_2{O_4}^- ]_{initial}}{ 0.016 } = \frac{ 2.0 \times 10^{-6} \times 0.016 }{ 0.016 } $$ $x = 2.0 \times 10^{-6} $ 4. Test if the assumption was correct: $$\frac{ 2.0 \times 10^{-6} }{ 0.016 } \times 100\% = 0.012 \%$$ 5. The percent is less than 5%. Thus, it is correct to say that $x = 2.0 \times 10^{-6} $ 6. Determine the hydronium concentration: $$[H_3O^+] = x + [H_3O^+]_{initial} = 2.0 \times 10^{-6} + 0.016 = 0.016 $$ 7. Calculate the pH: $$pH = -log[H_3O^+] = -log( 0.016 ) = 1.80 $$ $$[OH^-] = \frac{1.0 \times 10^{-14}}{[H_3O^+]} = \frac{1.0 \times 10^{-14}}{ 0.016 } = 6.2 \times 10^{-13} \space M$$ $$pOH = 14.00 - 1.80 = 12.20$$ $[HC_3H_2{O_4}^{-}] = 0.016 - 2.0 \times 10^{-6} = 0.016 \space M$ $[C_3H_2{O_4}^{2-}] = x = 2.0 \times 10^{-6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.