Chemistry: The Molecular Nature of Matter and Change 7th Edition

Published by McGraw-Hill Education
ISBN 10: 007351117X
ISBN 13: 978-0-07351-117-7

Chapter 18 - Problems - Page 820: 18.74

Answer

(a) $$pH = 2.37 $$ (b) $$pOH = 11.53$$

Work Step by Step

(a) 1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HZ ]& [ Z^- ]& [ H_3O^+ ]\\ Initial& 0.075 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.075 -x& 0 +x& 0 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each pressure is equal to its balance coefficient. $$K_a = \frac{P_{Products}}{P_{Reactants}} = \frac{[ Z^- ][ H_3O^+ ]}{[ HZ ]}$$ $$K_a = \frac{(x)(x)}{[ HZ ]_{initial} - x}$$ 3. Assuming $ 0.075 \gt\gt x:$ $$K_a = \frac{x^2}{[ HZ ]_{initial}}$$ $$x = \sqrt{K_a \times [ HZ ]_{initial}} = \sqrt{ 2.55 \times 10^{-4} \times 0.075 }$$ $x = 4.4 \times 10^{-3} $ 4. Test if the assumption was correct: $$\frac{ 4.4 \times 10^{-3} }{ 0.075 } \times 100\% = 5.9 \%$$ The percent is greater than 5%, therefore, the approximation is invalid. 5. Return for the original expression and solve for x: $$K_a = \frac{x^2}{[ HZ ]_{initial} - x}$$ $$K_a [ HZ ] - K_a x = x^2$$ $$x^2 + K_a x - K_a [ HZ ] = 0$$ - Using bhaskara: $$x_1 = \frac{- 2.55 \times 10^{-4} + \sqrt{( 2.55 \times 10^{-4} )^2 - 4 (1) (- 2.55 \times 10^{-4} ) ( 0.075 )} }{2 (1)}$$ $$x_1 = 4.25 \times 10^{-3} $$ $$x_2 = \frac{- 2.55 \times 10^{-4} - \sqrt{( 2.55 \times 10^{-4} )^2 - 4 (1) (- 2.55 \times 10^{-4} )( 0.075 )} }{2 (1)}$$ $$x_2 = -4.5 \times 10^{-3} $$ - The concentration cannot be negative, so $x_2$ is invalid. $$x = 4.25 \times 10^{-3} $$ 6. $$[H_3O^+] = x = 4.25 \times 10^{-3} $$ 7. Calculate the pH: $$pH = -log[H_3O^+] = -log( 4.25 \times 10^{-3} ) = 2.37 $$ (b) 3. Assuming $ 0.045 \gt\gt x:$ $$K_a = \frac{x^2}{[ HZ ]_{initial}}$$ $$x = \sqrt{K_a \times [ HZ ]_{initial}} = \sqrt{ 2.55 \times 10^{-4} \times 0.045 }$$ $x = 3.4 \times 10^{-3} $ 6. $$[H_3O^+] = x = 3.4 \times 10^{-3} $$ 7. Calculate the pH: $$pH = -log[H_3O^+] = -log( 3.4 \times 10^{-3} ) = 2.47 $$ $$pOH = 14.00 - 2.47 = 11.53$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.