Chemistry (7th Edition)

Published by Pearson
ISBN 10: 0321943171
ISBN 13: 978-0-32194-317-0

Chapter 15 - Aqueous Equilibria: Acids and Bases - Worked Example - Page 618: 13

Answer

(a) $[H_3O^+] = 3.981 \times 10^{- 8}M$ $[OH^-] = 2.512 \times 10^{- 7}M$ (b) $[H_3O^+] = 1.585 \times 10^{- 3}M$ $[OH^-] = 6.31 \times 10^{- 12}M$

Work Step by Step

(a) 1. Calculate the hydronium concentration: $[H_3O^+] = 10^{-pH}$ $[H_3O^+] = 10^{- 7.4}$ $[H_3O^+] = 3.981 \times 10^{- 8}$ 2. Calculate the hydroxide concentration: $[H_3O^+] * [OH^-] = Kw = 10^{-14}$ $ 3.981 \times 10^{- 8} * [OH^-] = 10^{-14}$ $[OH^-] = \frac{10^{-14}}{ 3.981 \times 10^{- 8}}$ $[OH^-] = 2.512 \times 10^{- 7}$ (b) 1. Calculate the hydronium concentration: $[H_3O^+] = 10^{-pH}$ $[H_3O^+] = 10^{- 2.8}$ $[H_3O^+] = 1.585 \times 10^{- 3}$ 2. Calculate the hydroxide concentration: $[H_3O^+] * [OH^-] = Kw = 10^{-14}$ $ 1.585 \times 10^{- 3} * [OH^-] = 10^{-14}$ $[OH^-] = \frac{10^{-14}}{ 1.585 \times 10^{- 3}}$ $[OH^-] = 6.31 \times 10^{- 12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.