Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company
ISBN 10: 0078021529
ISBN 13: 978-0-07802-152-7

Chapter 15 - Questions and Problems - Page 712: 15.70

Answer

T = 200 $^oC$: $K_C =59.0$ $K_p = 2.29 \times 10^3$ T = 300 $^o C$ $K_C = 3.40$ $K_p = 1.60 \times 10^2$ T = 400 $^o C$ $K_C = 2.10$ $K_p = 1.16 \times 10^2$ The reaction is exothermic.

Work Step by Step

T = 200: 1. Write the equilibrium constant expression: - The exponent of each concentration is equal to its balance coefficient. $$K_C = \frac{[Products]}{[Reactants]} = \frac{[ B ] ^{ 2 }}{[ A ]}$$ $K_p = K_c(RT)^{\Delta n} = K_c(0.08206*T)^{2 -1 } = K_c(0.08206T)$ 2. Substitute the values and calculate the constant value: $$K_C = \frac{( 0.843 )^{ 2 }}{( 0.0125 )} = 59.0$$ $K_p = (59.0)(0.08206)(200 + 273.15) = 2.29 \times 10^3$ T = 300: 2. Substitute the values and calculate the constant value: $$K_C = \frac{( 0.764 )^{ 2 }}{( 0.171 )} = 3.40$$ $K_p = (3.40)(0.08206)(300 + 273.15) = 1.60 \times 10^2$ T = 400: 2. Substitute the values and calculate the constant value: $$K_C = \frac{( 0.724 )^{ 2 }}{( 0.250 )} = 2.10$$ $K_p = (2.10)(0.08206)(400 + 273.15) = 1.16 \times 10^2$ $K_c$ decreases as the temperature increases; therefore, the reaction is exothermic.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.