## Chemistry (4th Edition)

Published by McGraw-Hill Publishing Company

# Chapter 15 - Questions and Problems - Page 707: 15.18

#### Answer

(a) $$K_c = \frac{[CO]^2[O_2]}{[CO_2]^2}$$ $$K_p = \frac{P_{CO}^2}{P_{O_2}P_{CO_2}^2}$$ (b) $$K_c = \frac{[O_3]^2}{[O_2]^3}$$ $$K_p = \frac{P_{O_3}^2}{P_{O_2}^3}$$ (c) $$K_c = \frac{[COCl_2]}{[CO][Cl_2]}$$ $$K_p = \frac{P_{COCl_2}}{P_{CO}P_{Cl_2}}$$ (d) $$K_c = \frac{[CO][H_2]}{[H_2O]}$$ $$K_p = \frac{P_{CO}P_{H_2}}{P_{H_2O}}$$ (e) $$K_c = \frac{[H^+][HCOO^-]}{[HCOOH]}$$ (f) $$K_c = [O_2]$$ $$K_p = P_{O_2}$$

#### Work Step by Step

The $K_p$ expression follows this pattern: $$K_p = \frac{P_{products}}{P_{reactants}}$$ Where the exponent of each partial pressure is equal to the balance coefficient of the compound. The $K_c$ expression is very similar, but it uses the concentration of the compounds, and every compound that is not in the form of a pure solid or a pure liquid appear on the expression. If there is not any compound in the gaseous form, the $K_p$ is not applicable.

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.