Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.4 De Moivre's Theorem: Powers and Roots of Complex Numbers - 8.4 Exercises - Page 376: 16

Answer

(a) The three cube roots are: $3~cis~100^{\circ}$ $3~cis~220^{\circ}$ $3~cis~340^{\circ}$ (b) We can see the three vectors in the complex plane:

Work Step by Step

(a) $z = 27~cis~300^{\circ} = 27~(cos~300^{\circ}+i~sin~300^{\circ})$ $r = 27$ and $\theta = 300^{\circ}$ We can use this equation to find the cube roots: $z^{1/n} = r^{1/n}~[cos(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})+i~sin(\frac{\theta}{n}+\frac{360^{\circ}~k}{n})]$, where $k \in \{0, 1, 2,...,n-1\}$ When k = 0: $z^{1/3} = 27^{1/3}~[cos(\frac{300^{\circ}}{3}+\frac{(360^{\circ})(0)}{3})+i~sin(\frac{300^{\circ}}{3}+\frac{(360^{\circ})(0)}{3})]$ $z^{1/3} = 3~(cos~100^{\circ}+i~sin~100^{\circ})$ $z^{1/3} = 3~cis~100^{\circ}$ When k = 1: $z^{1/3} = 27^{1/3}~[cos(\frac{300^{\circ}}{3}+\frac{(360^{\circ})(1)}{3})+i~sin(\frac{300^{\circ}}{3}+\frac{(360^{\circ})(1)}{3})]$ $z^{1/3} = 3~(cos~220^{\circ}+i~sin~220^{\circ})$ $z^{1/3} = 3~cis~220^{\circ}$ When k = 2: $z^{1/3} = 27^{1/3}~[cos(\frac{300^{\circ}}{3}+\frac{(360^{\circ})(2)}{3})+i~sin(\frac{300^{\circ}}{3}+\frac{(360^{\circ})(2)}{3})]$ $z^{1/3} = 3~(cos~340^{\circ}+i~sin~340^{\circ})$ $z^{1/3} = 3~cis~340^{\circ}$ (b) We can see the three vectors in the complex plane:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.